Power conversion efficiency exceeding the Shockley-Queisser limit in a ferroelectric insulator

نویسندگان

  • Jonathan E. Spanier
  • Vladimir M. Fridkin
  • Andrew M. Rappe
  • Andrew R. Akbashev
  • Alessia Polemi
  • Yubo Qi
  • Zongquan Gu
  • Steve M. Young
  • Christopher J. Hawley
  • Dominic Imbrenda
  • Geoffrey Xiao
  • Andrew L. Bennett-Jackson
  • Craig L. Johnson
چکیده

Ferroelectric absorbers, which promote carrier separation and exhibit above-gap photovoltages, are attractive candidates for constructing efficient solar cells. Using the ferroelectric insulator BaTiO3 we show how photogeneration and the collection of hot, non-equilibrium electrons through the bulk photovoltaic effect (BPVE) yields a greater-than-unity quantum efficiency. Despite absorbing less than a tenth of the solar spectrum, the power conversion efficiency of the BPVE device under 1 sun illumination exceeds the Shockley–Queisser limit for a material of this bandgap. We present data for devices that feature a single-tip electrode contact and an array with 24 tips (total planar area of 1 × 1 μm) capable of generating a current density of 17 mA cm under illumination of AM1.5 G. In summary, the BPVE at the nanoscale provides an exciting new route for obtaining high-efficiency photovoltaic solar energy conversion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semiconducting ferroelectric photovoltaics through Zn2+ doping into KNbO3 and polarization rotation

We demonstrate a new band engineering strategy for the design of semiconductor perovskite ferroelectrics for photovoltaic and other applications from first principles. We study six ferroelectric solid solutions created by partially substituting Zn2+ for Nb5+ into the parent KNbO3 material, combined with charge compensation at the A sites with different combinations of higher valence cations. Ou...

متن کامل

Exceeding the solar cell Shockley–Queisser limit via thermal up-conversion of low-energy photons

Maximum efficiency of ideal single-junction photovoltaic (PV) cells is limited to 33% (for one sun illumination) by intrinsic losses such as band edge thermalization, radiative recombination, and inability to absorb below-bandgap photons. This intrinsic thermodynamic limit, named after Shockley and Queisser (S-Q), can be exceeded by utilizing low-energy photons either via their electronic up-co...

متن کامل

Efficiency above the Shockley-Queisser limit by using nanophotonic effects to create multiple effective bandgaps with a single semiconductor.

We present a pure photonic approach to overcome the Shockley-Queisser limit. A single material can show different effective bandgap, set by its absorption spectrum, which depends on its photonic structure. In a tandem cell configuration constructed from a single material, one can achieve two different effective bandgaps, thereby exceeding the Shockley-Queisser limit.

متن کامل

The generalized Shockley-Queisser limit for nanostructured solar cells

The Shockley-Queisser limit describes the maximum solar energy conversion efficiency achievable for a particular material and is the standard by which new photovoltaic technologies are compared. This limit is based on the principle of detailed balance, which equates the photon flux into a device to the particle flux (photons or electrons) out of that device. Nanostructured solar cells represent...

متن کامل

Limit of efficiency for photon-enhanced thermionic emission vs. photovoltaic and thermal conversion

Conversion of sunlight by photon-enhanced thermionic emission (PETE) combines a photonic process similar to photovoltaic cells, and a thermal process similar to conventional thermionic converters. As a result, the upper limit on the conversion efficiency of PETE devices is not the same as the Shockley– Queisser (SQ) limit that corresponds to the bandgap of the absorbing material, nor to the Car...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016